Data, Assemble: Towards Efficient Medical Image Analysis

Zongwei Zhou, PhD

Johns Hopkins University

October 1, 2021

Example I

- Task: To classify images of "0"
- MNIST¹: A dataset that provides images and annotations of "0-9"
- MNIST-*zero*: Derived from MNIST, wherein only the images of "0" are labeled as positives and the remainder are negatives (sufficient for the task)
- The numbers of images are the same in MNIST and MNIST-zero
- $\bullet\,$ The only difference is that the makeup of negatives ("1–9") is unknown in MNIST-zero, yet it is known in MNIST

MNIST-zero

¹Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Example I

- MNIST outperforms MNIST-zero for classifying images of "0"
- Fine-grained labels (e.g., 1–9) in negative examples ("non-0") positively affect the classification of "0".
- The lack of fine-grained labels causes confusion between zero-like "6" and "0"

Example I

- Similarly, MNIST outperforms MNIST-three for classifying images of "3"
- Fine-grained labels (e.g., 1–2, 4–9) in negative examples ("non-3") positively affect the classification of "3".
- The lack of fine-grained labels causes confusion between three-like "8" and "3"

More Demonstrations for Example I (Classification)

- The numbers of images are <u>the same</u> in
 - CIFAR-cat vs. CIFAR
 - ChestXray-five vs. ChestXray
 - CheXpert-five vs. CheXpert
- The performance was evaluated on the class of interest (e.g., zero, cat, five diseases)
- Conclusion: A dataset that is labeled with many classes can foster more powerful *classification* models than one that is only labeled the class of interest

More Demonstrations for Example I (Segmentation)

- Task: To segment "Bus" from images
- Cityscapes²: A dataset that provides images and pixel-wise annotations of 19 classes.
- Cityscapes-*five*: Derived from Cityscapes, wherein only five classes (Bus, Road, Sidewalk, Building, and Wall) are labeled (sufficient for the task)
- The numbers of images are the same in Cityscapes and Cityscapes-five
- The only difference is that the makeup of background is unknown in Cityscapes-*five*, yet it is known in Cityscapes

	bus	road	sidewalk	building	wall	
terrain	sky	traffic light	traffic sign	car	fence	pole
motorcycle	bicycle	person	rider	vegetation	truck	train

Cityscapes-five

Cityscapes

²Marius Cordts et al. "The cityscapes dataset for semantic urban scene understanding". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 3213–3223.

More Demonstrations for Example I (Segmentation)

- Cityscapes outperforms Cityscapes-five for segmenting bus
- Fine-grained labels in negative examples ("background") positively affect the segmentation of "Bus".
- The lack of fine-grained labels causes confusion between "car" and "bus"
- Conclusion: A dataset that is labeled with many classes can foster more powerful *segmentation* models than one that is only labeled the class of interest

Cityscapes-five

Cityscapes

- A dataset that is labeled with many classes can foster more powerful models than one that is only labeled the class of interest
 - Classification—true
 - Segmentation—true
 - Detection, localization, other problems
- Learning from classes in "negative examples" can better delimit the decision boundary of the class of interest
- Wanted: A dataset that is labeled with many classes.

Example II

- Task: To classify images of "lung nodule"
- ChestXray-*nodule*: Derived from NIH ChestXray³, wherein only the disease of "nodule" is annotated (sufficient for the task)
- "Lung nodule" accounts for 8.6%, 4,060/47,115 examples on NIH ChestXray
- ChestXray-nodule offers AUC score of lung nodule classification equals to 69.1%
- We then progressively add more annotation of other chest diseases

ChestXray

³Xiaosong Wang et al. "Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 2097–2106.

- The performance of "nodule" classification improves when adding more labels of other chest diseases (non-nodule)
- Learning from additional classes can better delimit the decision boundary of the class of interest (lung nodule)

• The performance gain (in red) is positively correlated to inter-class similarity (r = 0.83; p = 4.93e-4)

- Annotating "negative examples" facilitates the diagnosis of the interested disease
 - A unique annotation scheme for computer-aided diagnosis of rare diseases and emerging pandemics, where "positive examples" are hard to collect, yet "negative examples" are relatively easier to assemble.
- (I) Assembling existing labels of <u>medically related</u> diseases can improve the classification of the disease of interest
- (II) Assembling existing labels of <u>spatially related</u> organs/diseases can improve the segmentation of the organ/disease of interest
- Wanted: A dataset that is labeled with many classes

- $\bullet\,$ Examples I & II stress the need for a dataset that is labeled with many classes
- The creation of large-scale, multi-center, fully-labeled datasets will be fundamental to foster future research in deep learning applied to medical images⁴
- The acquisition and utilization of large-scale labeled datasets are not common amongst medical imaging communities.
- Two main reasons:
- (I) Creating large-scale datasets from scratch requires prohibitively high annotation costs, far exceeding the capability of an individual institute
 - The NLST study involved over 53,000 patients and cost over \$250 million⁵.
- (II) Sharing medical data involves several privacy concerns

⁴Gabriel Chartrand et al. "Deep learning: a primer for radiologists". In: Radiographics 37.7 (2017), pp. 2113–2131.

⁵NLST. "Reduced lung-cancer mortality with low-dose computed tomographic screening". In: New England Journal of Medicine 365.5 (2011), pp. 395–409.

- Recently, an increasing number of publicly available datasets became available thanks to the collective efforts of imaging data archives and international competitions
- Exactly how such a great number of dissociated datasets can be harnessed and organized is a critical problem
- Need 1 \rightarrow Data 1, Need 2 \rightarrow Data 2, Need 3 \rightarrow Data 3, ..., Need N \rightarrow Data N
- Assembling Data 1–N for Needs 1–N
- We introduce a new initiative "data, assemble" that
 - Explores the full potential of an assembly of those datasets with partial labels
 - Ultimately curates a large-scale, fully-labeled dataset

Assembling Your Data (Strictly Non-overlapping)

- Assembling data with <u>strictly non-overlapping</u> labels substantially improves the performance of each class
 - $D_0 = \{1, 3, 5, 7, 9\}$ (odd number)
 - $D_1 = \{0, 2, 4, 6, 8\}$ (even number)
 - $\bullet \ \mathcal{D}_0$ and \mathcal{D}_1 are taken from MNIST

Dataset	${\cal D}_0$	\mathcal{D}_1	$\mathcal{D}_0 \& \mathcal{D}_1$
Num 1	99.6	-	99.6 (↑ 0.0)
Num 3	96.7	-	97.9 († 1.1)
Num 5	96.8	-	97.2 (↑ 0.4)
Num 7	98.4	-	98.8 (↑ 0.4)
Num 9	93.8	-	95.8 († 2.0)
Num 0	-	99.4	99.7 (↑ 0.3)
Num 2	-	97.4	98.4 († 1.0)
Num 4	-	97.6	97.2 <mark>(↓ 0.4)</mark>
Num 6	-	99.0	99.0 (↑ 0.0)
Num 8	-	91.0	94.2 († 3.2)

Assembling Your Data (Strictly Non-overlapping)

- Assembling data with <u>strictly non-overlapping</u> labels substantially improves the performance of each class
 - $\mathcal{D}_0 = \{ \text{bird, cat, deer, dog, frog, horse} \}$ (animal)
 - $\mathcal{D}_1 = \{airplane, automobile, ship, truck\}$ (transportation)
 - $\bullet \ \mathcal{D}_0 \mbox{ and } \mathcal{D}_1 \mbox{ are taken from CIFAR }$

Dataset	${\cal D}_0$	${\cal D}_1$	$\mathcal{D}_0 \& \mathcal{D}_1$
Bird	86.4	-	87.4 († 1.0)
Cat	85.1	-	86.1 († 1.0)
Deer	88.9	-	89.9 († 1.0)
Dog	89.4	-	89.4 (1 0.0)
Frog	94.3	-	94.8 (1 0.5)
Horse	92.8	-	93.7 (↑ 0.9)
Airplane	-	93.0	93.5 (1 0.5)
Automobile	-	95.9	96.1 († 0.2)
Ship	-	95.8	95.9 († 0.1)
Truck	-	93.3	94.5 († 1.2)

Assembling Your Data (Strictly Non-overlapping)

- Assembling data with <u>strictly non-overlapping</u> labels substantially improves the performance of each class
 - $\mathcal{D}_0 = \{ Cardiomegaly, Pneumonia, Atelectasis, Edema \}$
 - $\mathcal{D}_1 = \{ Effusion, Consolidation, Pneumothorax \}.$
 - $\bullet \ \mathcal{D}_0$ and \mathcal{D}_1 are taken from the CheXpert and ChestXray datasets, respectively

Dataset	\mathcal{D}_0	\mathcal{D}_1	$\mathcal{D}_0 \& \mathcal{D}_1$
Cardiomegaly	72.7	-	75.5 († 2.8)
Pneumonia	46.3	-	56.3 († 10.0)
Atelectasis	58.0	-	74.9 († 16.9)
Edema	83.0	-	87.3 († 4.3)
Effusion	-	77.1	79.0 († 1.9)
Consolidation	-	67.3	68.7 († 1.4)
Pneumothorax	-	65.2	77.1 († 1.9)

Assembling Your Data (Some Overlapping)

- Assembling data with <u>some overlapping</u> labels can also improve the performance of each class
 - $\mathcal{D}_0 = \{1, 2, \underline{3}, \underline{4}, \underline{5}\}$
 - $\mathcal{D}_1 = \{\underline{3}, \underline{4}, \underline{5}, 6, 7\}$
 - $\bullet \ \mathcal{D}_0$ and \mathcal{D}_1 are taken from MNIST

Dataset	\mathcal{D}_0	\mathcal{D}_1	$\mathcal{D}_0 \& \mathcal{D}_1$
Num 1	95.6	-	95.9 (↑)
Num 2	92.0	-	92.9 (↑)
<u>Num 3</u>	89.6	89.0	92.8 (↑↑↑)
<u>Num 4</u>	90.6	89.5	94.3 (↑↑↑)
<u>Num 5</u>	87.0	85.2	94.0 (↑↑↑)
Num 6	-	95.2	96.1 (↑)
Num 7	-	93.9	95.0 (↑)

Assembling Your Data (Some Overlapping)

- Assembling data with <u>some overlapping</u> labels can further benefit from advancements in semi-supervised learning (e.g., pseudo labeling and consistency constraints)
- Learning from a mixture of partial labels performs on par with that from full labels
 - $\mathcal{D}_0 = \{1, 2, \underline{3}, \underline{4}, \underline{5}\}$
 - $\mathcal{D}_1 = \{\underline{3}, \underline{4}, \underline{5}, 6, 7\}$
 - $\bullet \ \mathcal{D}_0 \mbox{ and } \mathcal{D}_1 \mbox{ are taken from MNIST}$

	<u>n.s.</u>			
Dataset	$\mathcal{D}_0 \& \mathcal{D}_1$ (partial)	$\mathcal{D}_0 \And \mathcal{D}_1$ (partial)	$\mathcal{D}_0 \& \mathcal{D}_1$ (full)	
Num 1	95.9	98.5 († 2.6)	98.6 († 2.7)	
Num 2	92.9	96.5 († 3.6)	96.5 († 3.6)	
<u>Num 3</u>	92.8	94.0 († 1.2)	94.3 († 1.5)	
<u>Num 4</u>	94.3	94.9 (1 0.6)	95.3 († 1.0)	
<u>Num 5</u>	94.0	93.3 <mark>(↓ 0.7)</mark>	93.8 (↓ 0.2)	
Num 6	96.1	98.1 († 2.0)	98.0 († 1.9)	
Num 7	95.0	96.3 († 1.3)	96.4 († 1.4)	
	↑			
	Semi-supervised learning			

Assembling Your Data (Some Overlapping)

- Assembling data with some overlapping labels can further benefit from advancements in semi-supervised learning (e.g., pseudo labeling and consistency constraints)
- Learning from a mixture of partial labels performs on par with that from full labels
- Learning from Consolidation and Pneumothorax leads to a noticeable improvement of Cardiomegaly (64.6%→83.9%) and Pneumonia (46.1%→67.9%) classification.
 - $\mathcal{D}_0 = \{ Cardiomegaly, Pneumonia, Atelectasis, Edema, Effusion \} \}$
 - $D_1 = \{ \underline{\text{Atelectasis}}, \underline{\text{Edema}}, \underline{\text{Effusion}}, \text{Consolidation}, \text{Pneumothorax} \}$
 - $\bullet~\mathcal{D}_0$ and \mathcal{D}_1 are taken from the CheXpert and ChestXray datasets, respectively

			n.s.		
Dataset	\mathcal{D}_0	$oldsymbol{\mathcal{D}_0} \& oldsymbol{\mathcal{D}_1}$ (partial)	${\cal D}_{f 0} \ \& \ {\cal D}_{f 1}$ (partial)	${\cal D}_0 \& {\cal D}_1$ (full)	
Cardiomegaly	64.6	75.0	83.9 († 19.3)	83.5 († 18.9)	
Pneumonia	46.1	62.9	67.9 († 21.8)	68.3 († 22.2)	
			†		
		Semi-supervised learning			

Data, Assemble

- How to exploit the (partially labeled) data assembly? Detailed in
 - Mintong Kang, Yongyi Lu, Alan Yuille, Zongwei Zhou. Data, Assemble: Leveraging Multiple Datasets with Heterogeneous and Partial Labels. https://arxiv.org/pdf/2109.12265.pdf

- The initiative of "data, assemble" is critical
- (I) Creating large-scale labeled datasets from scratch for each clinical need is difficult; assembling publicly available data is relatively easier—e.g., AbdomenCT-1K⁶
- (II) Learning from diverse labels can delimit the decision boundary of each individual class and enhance the performance—Example I
- (III) Assembling existing labels of related diseases is a more effective and efficient choice than narrowly pursuing extensive labels for positive examples—Example II

⁶ Jun Ma et al. "Abdomenct-1k: Is abdominal organ segmentation a solved problem". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

Data, Assemble: Towards Efficient Medical Image Analysis

Zongwei Zhou, PhD

Johns Hopkins University

October 1, 2021