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Example |

@ Task: To classify images of “0"
e MNIST!: A dataset that provides images and annotations of “0-9"

@ MNIST-zero: Derived from MNIST, wherein only the images of “0" are labeled as
positives and the remainder are negatives (sufficient for the task)

@ The numbers of images are the same in MNIST and MNIST-zero

@ The only difference is that the makeup of negatives (“1-9") is unknown in MNIST-

zero, yet it is known in MNIST
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Example |

@ MNIST outperforms MNIST-zero for classifying images of “0"

@ Fine-grained labels (e.g., 1-9) in negative examples (“non-0") positively affect the
classification of “0".

@ The lack of fine-grained labels causes confusion between zero-like “6" and “0"
O Class of interest—"Zero”
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Example |

@ Similarly, MNIST outperforms MNIST-three for classifying images of “3"

o Fine-grained labels (e.g., 1-2, 4-9) in negative examples (“non-3") positively affect
the classification of “3".

@ The lack of fine-grained labels causes confusion between three-like “8" and “3"

© Class of interest—"Three"”
© Others

Bt

2% H o

U320 ‘n

A
MNIST

Zongwei Zhou, PhD Data, Assemble: Towards Efficient Medical Image Analysis



More Demonstrations for Example | (Classification)

@ The numbers of images are the same in

o CIFAR-cat vs. CIFAR
o ChestXray-five vs. ChestXray
o CheXpert-five vs. CheXpert

@ The performance was evaluated on the class of interest (e.g., zero, cat, five diseases)

@ Conclusion: A dataset that is labeled with many classes can foster more powerful
classification models than one that is only labeled the class of interest
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More Demonstrations for Example | (Segmentation)

@ Task: To segment “Bus” from images
o Cityscapes®: A dataset that provides images and pixel-wise annotations of 19 classes.

o Cityscapes-five: Derived from Cityscapes, wherein only five classes (Bus, Road,
Sidewalk, Building, and Wall) are labeled (sufficient for the task)

@ The numbers of images are the same in Cityscapes and Cityscapes-five

@ The only difference is that the makeup of background is unknown in Cityscapes-five,
yet it is known in Cityscapes

bus road sidewalk building wall

sky car fence

motorcycle bicycle person rider vegetation truck

Cityscapes-five Cityscapes

2Marius Cordts et al. “The ci | for ic urban scene under ling”". In: Pr
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More Demonstrations for Example | (Segmentation)

o Cityscapes outperforms Cityscapes-five for segmenting bus

@ Fine-grained labels in negative examples (“background”) positively affect the seg-
mentation of “Bus".

@ The lack of fine-grained labels causes confusion between “car” and “bus”

@ Conclusion: A dataset that is labeled with many classes can foster more powerful
segmentation models than one that is only labeled the class of interest
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Thoughts on Example |

o A dataset that is labeled with many classes can foster more powerful models than
one that is only labeled the class of interest

o Classification—true
o Segmentation—true
o Detection, localization, other problems

@ Learning from classes in “negative examples” can better delimit the decision boundary
of the class of interest

o Wanted: A dataset that is labeled with many classes.
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Example ||

Task: To classify images of “lung nodule”

°
o ChestXray-nodule: Derived from NIH ChestXray3, wherein only the disease of “nod-
ule” is annotated (sufficient for the task)
@ “Lung nodule” accounts for 8.6%, 4,060/47,115 examples on NIH ChestXray
@ ChestXray-nodule offers AUC score of lung nodule classification equals to 69.1%
@ We then progressively add more annotation of other chest diseases
ChestXray
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common thorax diseases’. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 2097—2106.
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Example ||

@ The performance of “nodule” classification improves when adding more labels of
other chest diseases (non-nodule)

@ Learning from additional classes can better delimit the decision boundary of the class
of interest (lung nodule)
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Example ||

@ The performance gain (in red) is positively correlated to inter-class similarity (r =

0.83; p = 4.93¢-4)
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Thoughts on Example |l

@ Annotating “negative examples” facilitates the diagnosis of the interested disease
@ A unique annotation scheme for computer-aided diagnosis of rare diseases and emerging pan-
demics, where “positive examples” are hard to collect, yet “negative examples” are relatively
easier to assemble.
@ (1) Assembling existing labels of medically related diseases can improve the classifi-
cation of the disease of interest

o (II) Assembling existing labels of spatially related organs/diseases can improve the
segmentation of the organ/disease of interest

o Wanted: A dataset that is labeled with many classes
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Needs for Large Datasets

@ Examples | & Il stress the need for a dataset that is labeled with many classes

@ The creation of large-scale, multi-center, fully-labeled datasets will be fundamental
to foster future research in deep learning applied to medical images*

@ The acquisition and utilization of large-scale labeled datasets are not common amongst
medical imaging communities.

@ Two main reasons:

@ (I) Creating large-scale datasets from scratch requires prohibitively high annotation
costs, far exceeding the capability of an individual institute

o The NLST study involved over 53,000 patients and cost over $250 million®.

o (I) Sharing medical data involves several privacy concerns

4Gabriel Chartrand et al. “Deep learning: a primer for radiologists’. In: Radiographics 37.7 (2017), pp. 2113-2131,

SNLST. “Reduced lung-cancer mortality with low-dose computed tomographic screening”. In: New England Journal of Medicine 365.5 (2011),
pp. 395-409.
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Opportunity & Initiative

@ Recently, an increasing number of publicly available datasets became available thanks
to the collective efforts of imaging data archives and international competitions

@ Exactly how such a great number of dissociated datasets can be harnessed and
organized is a critical problem
@ Need 1—Data 1, Need 2—Data 2, Need 3—Data 3, ..., Need N—Data N

@ Assembling Data 1-N for Needs 1-N
@ We introduce a new initiative “data, assemble” that

o Explores the full potential of an assembly of those datasets with partial labels
o Ultimately curates a large-scale, fully-labeled dataset
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Assembling Your Data (Strictly Non-overlapping)

@ Assembling data with strictly non-overlapping labels substantially improves the per-
formance of each class
e Dp={1, 3, 5, 7, 9} (odd number)
o D1={0, 2, 4, 6, 8} (even number)
@ Dg and D; are taken from MNIST

Dataset Dy D4 Dy & D4

Num 1 99.6 - 99.6 (1 0.0)
Num 3 96.7 - 97.9 (7 1.1)
Num 5 96.8 - 97.2 (1 0.4)
Num 7 98.4 - 98.8 (1 0.4)
Num 9 93.8 - 95.8 (1 2.0)
Num 0 - 99.4 99.7 (10.3)
Num 2 - 97.4 98.4 (1 1.0)
Num 4 - 97.6 97.2 (1 0.4)
Num 6 - 99.0 99.0 (T 0.0)
Num 8 - 91.0 94.2 (13.2)
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Assembling Your Data (Strictly Non-overlapping)

@ Assembling data with strictly non-overlapping labels substantially improves the per-
formance of each class
o Do={bird, cat, deer, dog, frog, horse} (animal)

e Di={airplane, automobile, ship, truck} (transportation)
@ Dg and D; are taken from CIFAR

Dataset Dy D4 Dy & D4

Bird 86.4 - 87.4 (1 1.0)
Cat 85.1 - 86.1(11.0)
Deer 88.9 - 89.9 (1 1.0)
Dog 89.4 - 89.4 (10.0)
Frog 94.3 - 94.8 (1 0.5)
Horse 92.8 - 93.7 (1 0.9)
Airplane - 93.0 93.5(70.5)
Automobile - 95.9 96.1(70.2)
Ship - 95.8 95.9(10.1)
Truck - 93.3 94.5(11.2)
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Assembling Your Data (Strictly Non-overlapping

@ Assembling data with strictly non-overlapping labels substantially improves the per-

formance of each class

o Do={Cardiomegaly, Pneumonia, Atelectasis, Edema}

e D;={Effusion, Consolidation, Pneumothorax}.
@ Dy and D; are taken from the CheXpert and ChestXray datasets, respectively

Dataset Dy D4 Dy &Dy
Cardiomegaly 72.7 - 75.5 (T 2.8)
Pneumonia 46.3 - 56.3 (T 10.0)
Atelectasis 58.0 - 74.9 (T 16.9)
Edema 83.0 - 87.3(14.3)
Effusion - 77.1 79.0(71.9)
Consolidation - 67.3 68.7 (1 1.4)
Pneumothorax - 65.2 77.1(71.9)
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Assembling Your Data (Some Overlapping)

@ Assembling data with some overlapping labels can also improve the performance of
each class
o Do={1, 2, 3 4 5}
e D1={3,4,5,6, 7}
@ Dg and D; are taken from MNIST

Dataset Dy D, Dy & D,
Num 1 95.6 - 95.9 (1)
Num 2 92.0 - 92.9(T)
Num 3 89.6 89.0 92.8 (1171)
Num 4 90.6 89.5 94.3 (111)
Num 5 87.0 85.2 94.0 (111)
Num 6 - 95.2 96.1 (1)
Num 7 - 93.9 95.0 (1)
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Assembling Your Data (Some Overlapping)

@ Assembling data with some overlapping labels can further benefit from advancements
in semi-supervised learning (e.g., pseudo labeling and consistency constraints)

@ Learning from a mixture of partial labels performs on par with that from full labels
e Do={1, 2, 3, 4, 5}
o D1={3,4,5 6, 7}
o Dg and D; are taken from MNIST

n.s.
1

Dataset ot e

Num 1 95.9 98.5(12.6)  98.6(12.7)
Num 2 92.9 96.5(13.6)  96.5(13.6)
Num 3 92.8 94.0(11.2)  94.3(115)
Num 4 94.3 94.9(10.6)  95.3(11.0)
Num 5 94.0 933(L0.7)  93.8(L0.2)
Num 6 96.1 98.1(12.0)  98.0(11.9)
Num 7 95.0 96.3(113)  96.4(11.4)

,t

Semi-supervised learning
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Assembling Your Data (Some Overlapping)

o Assembling data with some overlapping labels can further benefit from advancements
in semi-supervised learning (e.g., pseudo labeling and consistency constraints)

@ Learning from a mixture of partial labels performs on par with that from full labels
@ Learning from Consolidation and Pneumothorax leads to a noticeable improvement
of Cardiomegaly (64.6%—83.9%) and Pneumonia (46.1%—67.9%) classification.

o Do={Cardiomegaly, Pneumonia, Atelectasis, Edema, Effusion}
o D;={Atelectasis, Edema, Effusion, Consolidation, Pneumothorax}
@ Dy and D; are taken from the CheXpert and ChestXray datasets, respectively

n.s.

Dy & Dy Dy & Dy Dy & Dy
Dataset Do (partial) (partial) (full)
Cardiomegaly 64.6 75.0 83.9(119.3) 83.5(118.9)
Pneumonia 46.1 62.9 67.9(121.8) 683 (122.2)

1

Semi-supervised learning

Zongwei Zhou, PhD

Data, Assemble: Towards Efficient Medical Image Analysis



Data, Assemble

@ How to exploit the (partially labeled) data assembly? Detailed in
o Mintong Kang, Yongyi Lu, Alan Yuille, Zongwei Zhou. Data, Assemble: Leveraging Multiple
Datasets with Heterogeneous and Partial Labels. https://arxiv.org/pdf/2109.12265.pdf
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Data, Assemble

@ The initiative of “data, assemble” is critical

o (I) Creating large-scale labeled datasets from scratch for each clinical need is difficult;
assembling publicly available data is relatively easier—e.g., AbdomenCT-1K®

o (I) Learning from diverse labels can delimit the decision boundary of each individual
class and enhance the performance—Example |

o (I11) Assembling existing labels of related diseases is a more effective and efficient
choice than narrowly pursuing extensive labels for positive examples—Example |1

®Jun Ma et al. “Abd. 1k: Is abdominal organ a solved problem”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence (2021).
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